## **DEPARTMENT OF SCHOOL EDUCATION** Government JEE Coaching- 2019-20

### **MILESTONE - 2**

Time: 60 mins

60x4=240

Marks: 240

#### Instructions:

- 1) Answer all the questions
- 2) For Every correct answer Four marks will be given

#### 3) For Every wrong answer One mark will be deducted

#### CHOOSE THE CORRECT ANSWER

- 1. A small block slides without friction, down an inclined plane, starting from rest. Let  $S_n$  be the distance travelled from t= (n-1) to t = (n), then  $\frac{S_n}{S_{n+1}}$ 
  - 1)  $\frac{2n-1}{2n-1}$ 1)  $\frac{2n}{2n-1}$ 3)  $\frac{2n-1}{2n+1}$



2 The velocity – displacement graph of a particle moving along a straight line is shown. The most suitable acceleration displacement graph will be







| 7   | When a ball is thrown vertiple the maximum height $1) \sqrt{3} v_0$                | rtically with velocity $v_0$<br>nt, then the ball should<br><b>2) 3</b> $v_0$   | , it reaches a maximur<br>be thrown with velocit<br>3) $9v_0$   | n height of 'h'. If one wishes to<br>y<br>4) $\frac{3v_0}{2}$                 |
|-----|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------|
| 8   | The body A starts from acceleration $a_2$ . If they t                              | rest with acceleration<br>ravel equal distances i                               | $a_1$ . After 2s another<br>in 5 <sup>th</sup> second after the | body B starts from rest with an start of A, then the ratio $a_1: a_2$ is      |
| 9   | 1) 5:9<br>A particle starts from res                                               | 2) 5:7<br>t and has an accelerat                                                | 3) 9:5<br>ion of $2ms^{-2}$ for 10 s.                           | 4) 9:7<br>After that, the particle travels for<br>and comes back to rest. The |
|     | total distance covered by<br>1) 650 m                                              | / the particle is $[g = 10]$<br>2) 700 m                                        | $ms^{-2}$ ]<br>3) 750 m                                         | 4) 800 m                                                                      |
| 10  | A bus travelling, the first last one third at 60 kmph                              | one – third distance at<br>a. The average speed of                              | t a speed 10 kmph, the<br>of the bus is                         | e next one third at 20 kmph and at                                            |
| 11  | 1) 9 kmph<br>A rubber ball is dropped<br>its velocity on bouncing l                | 2) 16 kmph<br>from a height of 5m or<br>by a factor                             | 3) 18 kmph<br>a plane. On bouncing                              | 4) 48 kmph<br>it rises to 1.8 m. The ball losses                              |
|     | 1) $\frac{3}{5}$                                                                   | <b>2</b> ) $\frac{2}{5}$                                                        | 3) $\frac{16}{25}$                                              | 4) $\frac{9}{25}$                                                             |
| 12  | A body dropped from top<br>of tower is $[g = 10ms^{-2}]$                           | o of a tower falls throug                                                       | h 40 m during the last                                          | two seconds of its fall. The height                                           |
| 40  | 1) 60 m                                                                            | 2) 45 m                                                                         | 3) 80 m                                                         | 4) 50 m                                                                       |
| 13  | A particle moves in straig<br>distance is covered in tw<br>average speed of the pa | ght line covers half the<br>o equal time intervals<br>rticle during this motion | distance with speed o with speed of $4.5ms^{-1}$                | and $7.5ms^{-1}$ , respectively. The                                          |
|     | 1) $4.0ms^{-1}$                                                                    | 2) $5.0ms^{-1}$                                                                 | 3) $5.5ms^{-1}$                                                 | 4) 4.8 <i>ms</i> <sup>-1</sup>                                                |
| 14  | A drunkard takes a step                                                            | of 1m in 1 second. He                                                           | takes 5 seconds steps                                           | forward and 3 seconds steps                                                   |
|     | backwards and so on. The                                                           | ne time taken by him to                                                         | o fall in a pit 13m away                                        | from the starts is                                                            |
| 15  | 1) 26 S<br>A particle is moving alon                                               | 2) 31 S                                                                         | 3) 37 S<br>completes one revolutio                              | 4) 41 S<br>on in $40$ s. In 2 minutos 20 s the                                |
| 15  | ratio $\frac{ displacement }{distance}$ is                                         | g a circle such that it o                                                       |                                                                 | 1 11 40 5. 11 2 minutes 20 5 the                                              |
|     | 1) 0                                                                               | <b>2</b> ) $\frac{1}{7}$                                                        | 3) $\frac{2}{7}$                                                | 4) $\frac{1}{11}$                                                             |
| 16  | The Heaviest particle is                                                           |                                                                                 |                                                                 |                                                                               |
| 17  | 1) Meson<br>Which has the highest ic                                               | 2) Neuron                                                                       | 3) Proton                                                       | 4) Electron                                                                   |
| 17  | 1) $\alpha$ rays                                                                   | 2) <i>B rays</i>                                                                | 3) $\nu$ rays                                                   | 4) all of these                                                               |
| 18  | The radius of second Bo                                                            | hr orbit                                                                        | -,,,,-                                                          | ,                                                                             |
| 4.0 | 1) 0.053 nm                                                                        | 2) 0.0534 nm                                                                    | 3) 0.053 X 4 nm                                                 | 4) 0.053 X 20 nm                                                              |
| 19  | The spectrum of $He^+$ is (                                                        | expected to be similar                                                          | to that of                                                      |                                                                               |
| 20  | The metal which gives n                                                            | 2) Li<br>hoto electron most eas                                                 | silv in                                                         | 4) 116                                                                        |
| 20  | 1) Li                                                                              | 2) Na                                                                           | 3) Ca                                                           | 4) Cs                                                                         |
| 21  | The ratio of radius of 3rd                                                         | and 4 <sup>th</sup> Bohr orbit in hy                                            | drogen atom is                                                  | ,,                                                                            |
|     | 1) 3:4                                                                             | 2) 3:8                                                                          | 3) 9:16                                                         | 4) 8:9                                                                        |
| 22  | The total number of node                                                           | es are given by                                                                 |                                                                 |                                                                               |
|     | 1) <i>l</i>                                                                        | 2) n-1                                                                          | 3) n- <i>l</i> -1                                               | 4) n- <i>l</i>                                                                |
| 23  | The orbital angular mom                                                            | entum of a 'p' electron                                                         | is given as                                                     |                                                                               |
| 0.4 | 1) $\frac{\pi}{\sqrt{2\pi}}$                                                       | 2) $\sqrt{3} \frac{\pi}{4\pi}$                                                  | $3) \sqrt{\frac{3}{2}} \frac{h}{\pi}$                           | 4) $\frac{\sqrt{6} n}{2\pi}$                                                  |
| 24  | The radius of the atom is $11 \ 10^{-10}$ cm                                       | s of the order of $2$ ) $10^{-13}$ cm                                           | 3) $10^{-15}$ cm                                                | 4) $10^{-8}$ cm                                                               |
| 25  | The total spin resulting fi                                                        | rom a ' $d^7$ ' configuration                                                   |                                                                 |                                                                               |
|     | 1) $\pm \frac{1}{2}$                                                               | 2) ± 2                                                                          | 3) ± 3                                                          | 4) $\pm \frac{3}{2}$                                                          |

| 26 | If ionization energy of 'H                                                                                              | ' atom is 13.6V than ior                          | nization energy of He <sup>+</sup>                      | ion is                                      |  |  |  |
|----|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------|---------------------------------------------|--|--|--|
|    | 1) 13.6 ev                                                                                                              | 2) 27.2 ev                                        | 3) 6.8 v                                                | 4) 54.4 ev                                  |  |  |  |
| 27 | The quantum number fo                                                                                                   | r the first electron in an                        | atom are n=3, l=1, m=                                   | = -1 the atom is                            |  |  |  |
|    | 1) AI                                                                                                                   | 2) Si                                             | 3) Mg                                                   | 4) C                                        |  |  |  |
| 28 | Splitting of spectral lines                                                                                             | under the influence of                            | electrical field is                                     |                                             |  |  |  |
|    | 1) Stark effect                                                                                                         | 2) Zeeman effect                                  | 3) Photo electric effect                                | t 4) None of these                          |  |  |  |
| 29 | What will be the longest                                                                                                | wave length is Balmer                             | series of spectrum                                      |                                             |  |  |  |
|    | 1) 546 nm                                                                                                               | 2) 656 nm                                         | 3) 566 nm                                               | 4) 556 nm                                   |  |  |  |
| 30 | The uncertainty in morr                                                                                                 | entum of an electron                              | is 1 $X10^{-5}$ kg m/s. T                               | he uncertainty in its position is           |  |  |  |
|    | h=6.62X10 <sup>-34</sup> $kgm^2/s$                                                                                      | <b>0</b> 7                                        | 22                                                      |                                             |  |  |  |
|    | 1) 5.27 X 10 <sup>-30</sup> m                                                                                           | 2) 1.05 X 10 <sup>-26</sup> m                     | 3) 1.05 X 10 <sup>-28</sup> m                           | 4) 5.25 X 10 <sup>-28</sup> m               |  |  |  |
| 31 | T $T$ $T$ $T$ $T$ $T$ $T$ $T$ $T$ $T$                                                                                   | n+1 $l = 1$                                       |                                                         |                                             |  |  |  |
|    | The value of $\sum_{i=1}^{n} (i^{n} + i^{n})$                                                                           | $(m^2)$ , where $l = \sqrt{-1}$ , e               | equais                                                  |                                             |  |  |  |
|    | 1) <i>i</i>                                                                                                             | 2) <i>i</i> -1                                    | 3) - <i>i</i>                                           | 4) 0                                        |  |  |  |
| 32 | The conjugate of comple                                                                                                 | $\frac{1}{1}$ then                                | the complex number is                                   | 32                                          |  |  |  |
|    |                                                                                                                         | $\sum_{i=1}^{n}$                                  | $\sim$ $^{-1}$                                          |                                             |  |  |  |
|    | 1) $\frac{1}{i+1}$                                                                                                      | 2) $\frac{1}{i-1}$                                | 3) $\frac{1}{i-1}$                                      | 4) $\frac{1}{i+1}$                          |  |  |  |
| 32 | Taking the value of the s                                                                                               | quare root with positive                          | e real part only, the val                               | ue of $\sqrt{7 + 24i} + \sqrt{-7 - 24i}$ is |  |  |  |
|    | 1)1 + 7 <i>i</i>                                                                                                        | 2)—1 — 7 <i>i</i>                                 | 3) 7 <i>– i</i>                                         | 4) $-7 + i$                                 |  |  |  |
| 34 | 34 If $z_1, z_2$ be any two non-zero complex numbers such that $ z_1 + z_2  =  z_1  +  z_2 $ , then any org             |                                                   |                                                         |                                             |  |  |  |
|    | $(z_2)$ is equal to                                                                                                     | π                                                 |                                                         | π                                           |  |  |  |
|    | 1) — <i>π</i>                                                                                                           | 2) - $\frac{\pi}{2}$                              | 3) 0                                                    | 4) $\frac{\pi}{2}$                          |  |  |  |
| 35 | If arg $(Z) < 0$ , then arg (                                                                                           | $-Z) - \arg(Z) = ?$                               |                                                         | _                                           |  |  |  |
|    | 1) π                                                                                                                    | 2) —π                                             | 3) $-\frac{\pi}{2}$                                     | 4) $\frac{\pi}{2}$                          |  |  |  |
| 36 | If $z_1, z_2, z_3$ are complex no                                                                                       | umbers such that                                  |                                                         | -                                           |  |  |  |
|    | $ z_1  =  z_2  =  z_3  = \left \frac{1}{z_1} + \frac{1}{z_2}\right $                                                    | $+\frac{1}{z_3}$ = 1 then $ z_{1+z_2+z_3} $       | is                                                      |                                             |  |  |  |
|    | 1) equal to 1                                                                                                           | 2) less than 1                                    | 3) greater than 1                                       | 4) equal to 3                               |  |  |  |
| 37 | If $ z^2 - 1  =  z ^2 + 1$ then                                                                                         | Z lies on a/an                                    |                                                         |                                             |  |  |  |
| 00 | 1) circle                                                                                                               | 2) parabola                                       | 3) ellipse                                              | 4) none of these                            |  |  |  |
| 38 | If $\omega \ (\neq 1)$ is a cube root                                                                                   | of unity and $(1 + \omega)^{\prime} =$            | $A+B\omega$ , then (A,B) equ                            |                                             |  |  |  |
| 30 | $(0,1) (0,1) (1+i)^{2011} -$                                                                                            | 2) (1,1)                                          | 3) (1,0)                                                | 4) (-1,1)                                   |  |  |  |
| 00 | $\frac{(1+i)}{(1-i)^{2009}} = ?$                                                                                        |                                                   |                                                         |                                             |  |  |  |
|    | 1) -1                                                                                                                   | 2) 1                                              | 3) 2                                                    | 4) -2                                       |  |  |  |
| 40 | If $x + iy = \frac{1}{1 + \cos(\theta + i)\sin(\theta)}$ th                                                             | en $4x^2 = ?$                                     |                                                         |                                             |  |  |  |
|    | 1) 0                                                                                                                    | 2) 1                                              | 3) 2                                                    | 4) 3                                        |  |  |  |
| 41 | If w is a complex cube ro                                                                                               | ot of unity then                                  |                                                         |                                             |  |  |  |
|    | $(\mu)\left(\frac{1}{3}+\frac{2}{9}+\frac{4}{27}\infty\right) + (\mu)\left(\frac{1}{2}+\frac{3}{8}+\frac{9}{32}\right)$ | <u>-</u> +…∞)                                     |                                                         |                                             |  |  |  |
|    | 1) 1                                                                                                                    | 2)-1                                              | 3) ω                                                    | 4) <i>i</i>                                 |  |  |  |
| 42 | $Z = 1 + i\sqrt{3} \Rightarrow  \arg z  +  \arg z $                                                                     | $ \mathbf{rg} \vec{z}  = ?$                       | ,                                                       | ,                                           |  |  |  |
|    | 1) 0                                                                                                                    | 2) $\frac{\pi}{2}$                                | 3) $\frac{\pi}{2}$                                      | $(\Delta) \frac{2\pi}{2\pi}$                |  |  |  |
| 12 | /<br>If la ⊢al la al = 2 thor                                                                                           | $-7_{3}$                                          | <sup>2</sup>                                            | · · · · · · · · · · · · · · · · · · ·       |  |  |  |
| 43 | 1) a straight line                                                                                                      | 2 a square                                        | 3) a circle                                             | 4) None                                     |  |  |  |
| 44 | If the amplitude of $7 - 2$ .                                                                                           | $-3i$ is $\frac{\pi}{2}$ then the locus           | of $z = x + iy$ is                                      | .,                                          |  |  |  |
|    | 1) $v_{\pm 1/2} = 2^{-1}$                                                                                               | 2) $v_{-1} = 0$                                   | $\frac{3}{2} \times \frac{1}{1} \times \frac{1}{1} = 0$ | 4) x-y+1-0                                  |  |  |  |
| 45 | $y \to y^- = 0$                                                                                                         | 2j x - y - 1 = 0                                  | $J_{j}$ $X + y + 1 = 0$                                 | +j $-y + i = 0$                             |  |  |  |
| 70 | i ne mangle formed by th                                                                                                | The points 1, $\frac{1}{\sqrt{2}}$ and $\iota$ as | s vertices in the argan                                 | u ulagram is                                |  |  |  |
|    | 1) scalene                                                                                                              | 2) equilateral                                    | <ol><li>isosceles</li></ol>                             | 4) right-angled                             |  |  |  |

# ANSWER KEY

|    | Γ                  |     | 1 |    |   | · · · · · |
|----|--------------------|-----|---|----|---|-----------|
| 1  | 3                  | 16  | 2 | 31 | 2 |           |
| 2  | 1                  | 17  | 3 | 32 | 1 |           |
| 3  | 2                  | 18  | 3 | 33 | 3 |           |
| 4  | 3                  | 19  | 1 | 34 | 3 |           |
| 5  | 4                  | 20  | 4 | 35 | 1 |           |
| 6  | 1                  | 21  | 3 | 36 | 1 |           |
| 7  | 1                  | 22  | 4 | 37 | 4 |           |
| 8  | 1                  | 23  | 1 | 38 | 2 |           |
| 9  | 3                  | 24  | 4 | 39 | 4 |           |
| 10 | 3                  | 25  | 4 | 40 | 2 |           |
| 11 | 2                  | 26  | 4 | 41 | 2 |           |
| 12 | 2                  | 27  | 1 | 42 | 4 |           |
| 13 | 1                  | 28  | 1 | 43 | 2 |           |
| 14 | 3                  | 29  | 2 | 44 | 4 |           |
| 15 | 4                  | 30  | 1 | 45 | 3 |           |
|    |                    | CO. |   |    |   |           |
|    | ( + <sup>3</sup> * |     |   |    |   |           |
|    |                    |     |   |    |   |           |